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1. 

A bilinear hysteretic model is used to study the response of various elastoplastic
structures. For fundamental analysis and understanding, a single-degree-of-free-
dom model often suffices. The idealization in the form of a bilinear response curve
results in simpler equations that are easier to analyse. Yet, the results obtained
are known to be of direct practical value. Much of the literature on studies of
elastoplastic structures is based on this simple model.

There have been numerous studies [1–6] on the forced response of elastoplastic
structures using a bilinear hysteretic model. Many of these studies have
concentrated on finding periodic responses, resonant frequencies and maximum
amplitude motions. There are also several studies [7–9] on chaotic motion of such
systems. For many practical applications, however, the understanding of the
transient response of the system is equally important. In an earlier paper [10],
Pratap et al. reported the analysis of free oscillations of an elastoplastic oscillator
with kinematic hardening as a parameter and showed that there was a unique limit
cycle as an asymptotic state of the system for a range of values of the hardening
parameter. A recent paper [6], apparently unaware of the results of reference [10],
reports some of those results as a part of the findings. As pointed out in reference
[10], the analysis was carried out without considering any viscous damping. The
solutions were obtained by piecing together analytical solutions on various
branches of the bilinear hysteretic curve. This construction was motivated by Shaw
and Holmes’s work on piecewise linear systems [11]. In the present work, the same
problem as in reference [10] but is considered, but viscous damping is included
which makes the phase space fully dissipative. In the earlier work, dissipation was
present in finite bands (during the plastic phase of the motion only) and therefore,
the phase space was only partially dissipative. In the presence of viscous damping,
the authors show that the unique limit cycle reported in the earlier work disappears
but other unique asymptotic states emerge that were non-existent before.

The model considered (shown in Figure 1), consists of two massless rigid links
of length l each, a concentrated mass m, an elastoplastic torsional spring, and a
rotational damper (to model viscous damping).
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Figure 1. Model.

Figure 2 shows the characteristics of the spring. Moment M is plotted against
j, normalized displacement, as defined in equation (2). The spring has spring
constant k during elastic motion and h2k during plastic motion. h2 is the kinematic
hardening coefficient, and is between 0 and 1. For h2 =0, the spring is perfectly
plastic, and for h2 =1, there is no plastic region and the spring is perfectly elastic.
The spring is modelled as having kinematic strain hardening, so that the difference
in moment from one extreme of elastic motion to the other (C to D) is always the
same. The rotational damper provides for damping proportional to the rate of
change of the angle a; the constant of this proportionality is b.

Since the system has only one degree of freedom, the equation of motion is a
single order differential equation. This would indicate that there are two state
variables, position (either linear or angular displacement) and velocity (again,
either linear or angular). However, the constants in the equation of motion for
each elastic region of motion depend on the state of the system at the end of the
previous plastic region. Therefore, three variables are necessary to fully describe

Figure 2. Spring characteristic.
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the state of the system: position, velocity, and a third variable to describe the
amount of plastic offset in the system (and thus the equilibrium for elastic
oscillations). It is possible to construct a model that would include isotropic
hardening as well, but that would require five state variables [6].

2.   

The non-dimensionalized equation of motion for the system is

j� +2vzj� + b2v2j= cv2, (1)

where

j= q/lā, v=z4k/ml2, z= b/lzkm (2–4)

and where

b=1 and c= j* in the elastic region (5)

and

b= h and c=−1
2(1− h2) sgn (j� ) in the plastic region. (6)

The relationship between the non-dimensionalized rotation n and displacement
j follows from the small angle approximation:

n= a/ā=2j. (7)

The three variables necessary to describe the state of the system are j, j� , and
j*, where j*= (j− 1

2sgn (j̇))(1− h2) in the plastic region, and remains constant
in the elastic region, where it is the equilibrium of the elastic oscillations. Note
that c, although constant in each region of motion, depends in each elastic motion
upon the final j* of the preceding plastic motion, and so can be considered a
dynamic variable. If one were to write equation (1) in state space form, either c
or j* would need to be included as a state variable [6]. In the present analysis,
however, inclusion of c as a state variable is not required.

3.   

Finding the solution of the equation of motion is straightforward, but because
there are both j and j� terms in the equation, the solution is a transcendental
function and therefore time t cannot be solved for explicitly. An iterative process,
based on Newton’s method, is used to determine the times at which the behavior
changes from plastic to elastic or vice versa. The system switches from plastic
motion in one direction to elastic motion in the other whenever velocity, j� , reaches
zero. It then switches from elastic motion to plastic motion in the same direction
after j changes by a unit amount, i.e., n changes by 2 (this is due to the kinematic
strain hardening assumption and the fact the j is normalized so that the maximum
difference between one extreme of elastic motion and the other is unity). Once the
time of a behavior change is found, j and j� at that time become initial conditions
for the next motion, and, if the ensuing motion is elastic, then j* at the time of
the change becomes the equilibrium of the new elastic motion.
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The maps shown in Figures 3–5 are the result of iterative simulations of the
system’s behavior. Yp+ and Yp− are the extreme values of motion; the values of
j at which j� is zero and the behavior changes from plastic motion in one direction
to elastic motion in the reverse direction. The map allows prediction of Yp− given
Yp+, then use of that value of Yp− to predict the next Yp+, and so on until the
system no longer undergoes plastic deformation. It is then possible to find j*,
which, since any plastic motion is finished, is the permanent plastic deformation.
The size of the elastic region is always the same, so the value of j* when the system
switches from elastic to plastic behavior is either (Yp+ − 1

2) or (Yp− + 1
2).

Although the map in Figure 6 is discussed in reference [10] in detail, the map
is reproduced here and its essential features discussed briefly as it is central to our
discussion of current results. Each map in Figures 3–6 has two curves: an upper
curve which shows the next value of Yp− given Yp+, and a lower curve which shows
the next value of Yp+ given Yp−. The map is read by taking an initial known value
of Yp+ or Yp− and finding consecutive Yp’s by following a stairlike path between
the two curves, upwards and to the left, until the line of slope 1 passing through
(0·5, −0·5) is reached. Without damping (z=0, see Figure 6), the two curves meet
at (0·5, −0·5), so any intersection with this line will be at that point or outside
the curves. When damping is introduced, the two curves move away from each
other along this line, so that the stair-path could end either outside the curves or
between them as shown in Figure 7.

Figure 3. Map for h2 =0·1, and various values of z.
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Figure 4. Map for h2 =0·5, and various values of z.

Figure 5. Map for h2 =0·8, and various values of z.
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Figure 6. Map for z=0, and various values of h2. A stair-like path is used to determine the
asymptotic state of the oscillator.

The line of slope 1 passing through (0·5, −0·5) will be called the elastic
oscillation line. On this line, Yp+ and Yp− are 1 unit apart, which is the amplitude
of undamped elastic motion. Once the stair-path of an undamped beam reaches
this line, the beam will continue to undergo elastic oscillations between the Yp+

and Yp− values given by the intersection of the path with this line, but no further
plastic motion will occur. Since damped elastic oscillations will have amplitudes
E 1 (assuming zq 0), no further plastic motion will occur for a damped beam as
well. Once its stair-path reaches this line, a damped beam will undergo decaying
elastic oscillations about the j* value determined by the most recent Yp . Thus, the
elastic oscillation line is the end of all stair paths, and marks the point at which
no further plastic motion can occur. The amount of permanent plastic offset, j*final ,
is found by adding 1

2 to the Yp− value of the intersection (or substracting 1
2 from

the Yp+ value). j*final is zero at (0·5, −0·5) and increases as the distance from this
point increases.

Figure 6 shows maps for various values of h2, without any damping (z=0). As
Pratap et al. [10] have discussed, h2 =0·5 is a critical value. If h2 q 0·5, all paths
lead to (0·5, −0·5). No matter how much energy the vibration starts with, there
is no net plastic deformation once the system reaches steady state (j*final is always
zero). For h2 Q 0·5, the curves have finite regions to the left of Yp+ =0·5 and above
Yp− =−0·5. These areas, which result in permanent plastic offset (j*final $ 0), are
called elastic trapping regions, and are discussed in greater detail in the next
section.
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Figure 7. Iterative map for h2 =0·5. Due to the presence of damping, the two curves comprising
the map move away from each other creating a gap along the elastic oscillation line. Here, two
stair-paths are shown, one ending on one of the curves, the other ending in the gap between the
two curves.

Figures 3–5 show maps for various amounts of damping, z, for three values of
h2 (0·1, 0·5, and 0·8). As damping increases for a constant h2, the curves spread
further apart and a gap opens up at their upper end, along the elastic oscillation
line. The portion of this line between the endpoints of the curves is called a
damping trapping region, and is discussed in greater detail in the next section.

Figure 8. The unique attractor for h2 =0·5 (z= h). (a) The attractor in the phase, (b) the attractor
in the M-n space.
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4.  

The asymptotic states of the oscillator can be classified according to the various
distinct regions of the map that trap the system.

4.1 Elastic Trapping Region
When the system reaches an extreme of motion in one direction, after which it

does not have enough energy left to reach the next onset of plastic behavior,
remaining oscillations will be confined (trapped) in the elastic region only. Pratap
et al. [10] have discussed elastic trapping regions for the undamped case. These are
the regions of the curves on the maps in Figure 6 which allow the stair-path to
end up on the elastic oscillation line outside the curves. This is one type of
asymptotic behavior of the oscillator. The asymptotic motion is purely elastic
about a permanent plastic offset that is easily found from the map. As damping
is increased, this elastic region grows as shown in Figures 3–5. This is because
energy is now dissipated by damping as well as plastic deformation, so there is
less energy available at the end of each plastic motion. Therefore, the likelihood
of further plastic motion decreases and more and more intial conditions lead to
eventual elastic oscillations after a particular value of Yp+ or Yp−. Thus the effect
of damping on this particular asymptotic state is to increase its basin of attraction.
It is also worth noting that the maximum possible permanent offset, determined
by the maxima of the curves, also increases as damping is increased for any given
h2. This effect is more dramatic for h2 e 0·5 for which the elastic region is born
essentially due to the existence of damping. For completeness, one also mentions
that because of damping, all oscillations will eventually die out and the asymptotic
state of the oscillator will be the permanent plastic offset j*, that can be found
from the map as discussed above.

4.2 Damping Trapping Region
The open line segments on the elastic oscillation line between the ends of the

two curves of the solution map present a different type of trapping region. A
stair-path terminating on one of these segments implies, once again, purely elastic
motion of the system. Approach of this asymptotic state, however, is different from
the previous one in that the system is prevented from yielding again in plastic flow
due to damping alone. In other words, at the last transition from plastic to elastic
motion, the system had enough energy to reach the next plastic yield had there
been no damping. Therefore, this region is called the damping trapping region.
Admittedly, this distinction is somewhat artificial, but it helps in characterizing the
different asymptotic states that come into existence due to the introduction of
damping.

4.3. The Unique Attractor
Without any damping, both curves on any Yp+ versus Yp− map eventually reach

a slope of −1 as =Yp= increases. As damping is increased, the curves not only spread
apart, their slopes also diverge. The two curves eventually become horizontal and
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Figure 9. j� /v versus z for (a) h2 =0·4 and (b) 0·6.

vertical as z:h. This implies that for any given h2, there is a unique value* of Yp−

and Yp+ which the oscillator settles to for all sufficiently large values† of Yp+ and
Yp− respectively. This asymptotic state corresponds to a unique value of j*. As
shown in Figure 8, this state corresponds to zero torque in the spring.

From the equations of motion, one can see that the frequency of oscillation in
the plastic region is vzh2 − z2. Thus, z= h is a critical value above which there
are no oscillations. This also implies that the damping is just enough so that the
final maximum yield occurs when there is no energy stored in the spring, so that
no subsequent oscillations of either the plastic or elastic variety occur. Since, for
a given value of hardening parameter, h2, this asymptotic state is unique the
authors call it a unique attractor. As one can see from the location of the limiting
curves in the map corresponding to the critical value of z, the horizontal and
vertical lines move towards the limiting values of =YP==0·5 as h2 increases and will
eventually lead to j*=0 for h2 =1 which makes perfect sense since h2 =1
represents the case of a purely elastic oscillator.

4.4. Basins of the Asymptotic States
Given a set of initial conditions, it is easy to compute the value of the first YP

by solving for the condition =j� ==0. Once the first YP is determined, one can use
the maps discussed above and determine the asymptotic fate of the solution
trajectory. Thus, it is possible to construct regions in the initial condition space
that lead to similar asymptotic states. What is more interesting, however, is to find
the change in these regions with varying z, the emphasis here being the effect of
damping on the system response. In Figure 9 are shown the basins for different
asymptotic states with varying z. For constructing the basins of attraction, only
velocities have been used as initial conditions. This, however, implies no loss of
generality as an initial displacement can always be converted into an equivalent
initial velocity based on energy calculations. The two plots shown in Figure 9
indicate how the elastic trapping region expands and the damping trapping region
shrinks as h2 increases.

*Technically, there are two values, one for Yp+ and one for Yp−. This, however, is expected due to
reflection symmetry in the map.
†This is just to ensure that the stair-paths ending on the elastic oscillation line between the open
ends of the two curves are excluded.



    557

5. 

The asymptotic states of an elastoplastic oscillator are studied in this paper. The
oscillator is assumed to exhibit kinematic hardening. Apart from plastic
deformation, viscous damping is considered as another energy dissipation
mechanism. The dynamics of the oscillator are studied for various degrees of
kinematic hardening and viscous damping. The asymptotic states of the oscillator
are obtained and classified by constructing maps that determine the fate of
unforced motions. It is shown that presence of viscous damping destroys the
unique limit cycle reported in reference [10] for h2 e 0·5. It is also shown that there
exists a critical damping for any value of kinematic hardening, given by z= h, for
which the oscillator has a unique asymptotic state. The variation in the basin of
attraction of the various asymptotic states with the amount of viscous damping
are also presented and it is shown that the damping trapping regions shrink and
the elastic trapping regions grow as the kinematic hardening parameter, h2

increases.
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